SCIENTIFIC RESEARCH ARTICLES ON MINERALS

Skip Navigation Links.
Collapse <div style='padding: 5px;' ><a style='font-size:13px !important; text-decoration:none;'>View our collection of articles on Trace Minerals</a></div>
Expand <div style='padding: 5px;' ><a style='font-size:13px !important; text-decoration:none;'>View articles by Dr. Meletis on Trace Minerals</a></div>
Expand <div style='padding: 5px;' ><a style='font-size:13px !important; text-decoration:none;'>View articles by Dr. Schauss On Trace Minerals</a></div>
Expand <div style='padding: 5px;' ><a style='font-size:13px !important; text-decoration:none;'>View our Scientific Articles</a></div>

The role of trace minerals in osteoporosis

Osteoporosis is a multifactorial disease with dimensions of genetics, endocrine function, exercise and nutritional considerations. Of particular considerations are calcium (Ca) status, Vitamin D, fluoride, magnesium and other trace elements. Several trace elements, particularly copper (Cu), manganese (Mn) and zinc (Zn), are essential in bone metabolism as cofactors for specific enzymes. Our investigations regarding the role of Cu, Mn and Zn in bone metabolism include data from studies with animals on Cu- and Mn-deficient diets. We have also demonstrated cellular deficiencies using bone powder implants, as well as fundamental changes in organic matrix constituents. In clinical studies we have demonstrated the efficacy of Ca, Cu, Mn and Zn supplementation on spinal bone mineral density in postmenopausal women. Each of these studies demonstrated the necessity of trace elements for optimal bone matrix development and bone density sustenance.